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Magnetorheological (MR) fluids are described using two nondimensional numbers, the Bingham and
Mason numbers. The Mason number is the ratio of particle magnetic forces to viscous forces and de-
scribes the behavior of MR fluids at the microscopic, particle level scale. At the macroscopic, continuum
scale, Bingham number is the ratio of yield stress to viscous stress, and describes the bulk motion of the
fluid. If these two nondimensional numbers can be related, then microscopic models can be directly
compared to macroscopic results. We show that if microscopic and macroscopic forces are linearly re-
lated, then Bingham and Mason number are inversely related, or, alternatively, that the product of the
Bingham number and the Mason number is a constant. This relationship is experimentally validated
based on measurements of apparent viscosity on a high shear rate, γ̇ ≈ −10 000 s 1, Searle cell rheometer.
This relationship between Mason number and Bingham number is then used to analyze a Mason number
based result, and is also used to inform the MR fluid device design process.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Magnetorheological (MR) fluid is a fluid composed of micron
scale magnetizable particles suspended in a carrier fluid. Upon the
application of field, the particles in the fluid align to form chain
like structures, and these chains cause the fluid to develop a field
dependent yield stress. The primary application of MR fluid has
been in MR dampers and MR energy absorbers, where the con-
trollable apparent viscosity allows for a controllable damping force
or stroking load, which enables high performance vibration iso-
lation [1] or shock mitigation that can adapt to payload weight and
impact severity [2,3].

Models of magnetorheological fluids have typically taken two
perspectives: either modeling the MR fluid as a collection of mi-
croscopic particles floating in a carrier fluid, or as a bulk fluid
continuum. Microscopic modeling of MR fluids focuses on the
behavior of the particles [4–6] by examining the formation and
destruction of chain structures in the fluid with the goal of pre-
dicting yield stress. The primary forces on the particles that govern
chain formation are viscous drag of the carrier fluid on the particle
and the interparticle magnetic forces. The ratio of particle mag-
netic forces to viscous forces is known as the Mason number, Mn,
[7–9], named after the work of Mason et. al. on the behavior of
fluid droplets in the presence of electric field [10]. In the equations
).
of motion, the Mason number is the governing parameter of the
shear response of a particle in an MR fluid, and is an essential part
of research on dynamic models of chain formation. The Mason
number, Mn, also has value in the analysis of experimental data,
such as when apparent viscosity is plotted against Mason number,
the apparent viscosity curves collapse to a single curve, thereby
reducing the dimensionality of a dataset [7,8].

At the bulk scale, one of the idealized descriptions of MR fluids
is as a Bingham plastic [11], in which the applied magnetic field
additively induces a field controllable yield stress to a Newtonian
fluid. The Bingham number, Bi, which is the ratio of yield stress to
viscous stress, describes the extent to which the controllable yield
stress can exceed the viscous stress (typically ≫Bi  1), and is an
essential descriptor of Bingham plastic behavior. The Bingham
number can be used to calculate flow rates, flow profiles, and
pressure losses in devices using Bingham plastic fluids [12]. In
particular, for shear mode MR devices, the Bingham number re-
presents the controllable force ratio [13], and since MR fluids are
used for the purpose of generating controllable forces, the Bing-
ham number is an essential and fundamental parameter for the
understanding and analysis of MR fluids at the bulk scale.

We seek to relate the Bingham number to the Mason number,
two nondimensional numbers that represent fundamental de-
scriptions of the behavior of MR fluid at macroscopic and micro-
scopic scales respectively. In particular, we focus on MR fluids
typically used in energy absorbing devices. These MR fluids are
typically suspensions of 1–10 μm diameter carbonyl iron particles
with solids loading ranging from 20 to 50 volume percent, and
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well described by the Bingham plastic model. By mathematically
relating Bingham number to Mason number, we enable micro-
scopic Mason number based analyses to be directly extended to
macroscopic or device scale Bingham number based problems.
Alternatively, experimental Bingham number based results can be
scaled down for comparison to Mason number based particle level
analyses.

In this study, the Bingham number and the Mason number are
developed, and it is shown that if microscopic forces map linearly
to macroscopic forces, then the Bingham number and the Mason
number are inversely related, or that the product of Bingham
number and Mason number is a constant. This notion is confirmed
through measurements of apparent viscosity. We experimentally
validate the claim that microscopic and macroscopic forces are
linearly related, and that this is akin to assuming that MR fluids are
well described by the Bingham plastic model. Finally, the re-
lationship between Mason number and Bingham number is used
to examine the experimental relevance of a Mason number based
result, as well as how such a relationship would inform the MR
fluid and/or device design process.
2. Background

To motivate the usage of these nondimensional numbers, both
numbers are derived in the analytical context in which they arise.
2.1. The Bingham number

For device scale analyses, the fluid is treated as a continuum
with nonlinear rheological properties. A typical MR fluid shear
stress vs. shear rate graph is shown in Fig. 1. These shear stresses
for each field strength are typically modeled by the Bingham
plastic model,

τ τ η γ= + ˙, (1)y pl

which has a plastic viscosity, ηpl, and a yield stress, τy. The yield
stress is magnetic field dependent, and it is typical to assume that
ηpl is independent of field strength, and equivalent to the off-state
viscosity, ηoff . In MR fluids, ηpl is chosen to be the slope of the high
shear rate asymptote of the shear stress curve, and τy corresponds
to the intersection of the high shear rate asymptote with the stress
axis at γ̇ = 0.

A typical way in which MR fluid is used in damper design is the
shear mode damper [13], where an upper plate moving with ve-
locity, v, and area, A, moves over a stationary lower plate with a
gap of d between the two plates. Here, the fluid velocity profile is
Fig. 1. Idealized rheogram or shear stress vs. shear rate diagram for an MR fluid.
linear, and the force on the upper plate is

⎜ ⎟⎛
⎝

⎞
⎠τ η= +F

v
d

A.
(2)d y pl

The force in conventional viscous dampers can be written in the
form =F c vd 0 , where c0 is the damping, and for a Newtonian fluid
in shear mode η=c A d/0 . For the shear mode MR damper, re-
arranging into this form yields

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

τ
η

η= + =F
d

v
A
d

v c v1 ,
(3)

d
y

pl
pl eq

where ceq is the equivalent damping for a fluid with a yield stress.
The ratio of equivalent damping to Newtonian damping yields the
damping coefficient

τ
η

= + = +
c

c

d

v
1 1 Bi

(4)

eq y

pl0

which describes the effect that the addition of a yield stress has on
damping force. For an MR fluid, where the yield stress is field
controllable, this ratio is the controllable force ratio. The term that
governs controllability is the Bingham number,

τ
η γ

=
˙

Bi ,
(5)

y

cpl

the ratio of magnetic forces τ( )y to viscous forces η γ̇( )cpl in the fluid,

where γ̇c is the characteristic shear rate of the system, which for a
shear mode damper is γ̇ = v d/c . Since the purpose of MR fluids is to
generate a field controllable force, and the Bingham number re-
presents the controllable force ratio of an MR device, it is clear that
Bingham number is a fundamental representation of the behavior
of MR fluids. In more complicated geometries, such as in pipe flow,
the Bingham number becomes an essential intermediate quantity
in the determination of the flow rate, flow profile, and controllable
force output of an MR fluid device [12]. But at the fluid level, the
Bingham number is a descriptive, empirical quantity, and does not
tell us anything about what causes the MR effect, or how a fluid
can be modified to improve its performance.
2.2. Mason number

Modeling MR fluid at the particle level allows us to develop
predictive models of fluid behavior, providing insight into the
chain formation that underlies the MR effect. At the microscopic
scale, MR fluids consist of magnetizable particles suspended in a
carrier fluid under the influence of an applied magnetic field, H0.
Fig. 2 contains a diagram of two interacting particles under shear
and applied magnetic field. Typically, these are spherical carbonyl
iron particles with diameter σ = − μ1 10 m. The particles are
Fig. 2. Diagram of two particles in a shearing fluid.
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usually modeled as perfect spheres with fixed point dipole mo-
ments mi aligned with the applied field, πσ=m M /6i p

3 , where
magnetization, χ=M Hp p 0 is also aligned with the applied field.

The force on particle i from particle j is

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥σ

θ θ= − + θ
F

r
F e e

( / )
(3cos 1) sin2

(6)
ij

ij
ij r ij

0
4

2

with force magnitude

μ

πσ
π μ σ= =F

m
M

3

4 48
.

(7)p0
0

2

4 0
2 2

This force magnitude can be turned into a reference stress,
τ σ=⁎ F /0

2, which will be used to normalize shear stress.
The fluid interacts with particles via viscous drag,

= − ˙ −F C x v( )i d i c , where ηc is the carrier fluid viscosity, ẋi and vc are
the particle and carrier fluid velocity respectively, and Cd is the
coefficient of drag, where for Stokes drag, πση=C 3d c. In most mi-
croscopic models, the carrier fluid moves independently of the
particles, allowing us to assume a carrier fluid velocity profile. In
shear, the bulk fluid, and thus the carrier fluid moves with velocity

γ= ˙yv ec x, where y is the distance from the stationary surface.
Solving for the trajectory of the particle, the equations of mo-

tions for the particle are

∑ γ¨ + ˙ − = ˙
=

xm C C yx F x x e( , ) ,
(8)

i i d i
j

N

i j d i x
1

ij

where xi is the position of the ith particle, and for this equation
only, mi is the mass. The particle mass is small, so that the force
contributions from particle acceleration are also small and occur at
such a short time scale that ¨m xi i can be set to zero [4]. This allows
the full equations of motion to be placed into a kinematic form,
which when placed in a dimensionless form yields

∑
σ

˙ = +
=
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F F

x
F x x

e
( , )
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y

,
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where Mn is the Mason number, and is the sole term governing
the shear response of the particles in the fluid. The Mason number
is the ratio of microscopic shear forces to microscopic magnetic
forces, defined as

σγ πη γ
τ

η γ

μ
= ˙ =

˙
=

˙
⁎

C
F M

Mn
3

144 .
(10)

d c c

p0 0
2

Because Mason number governs shear behavior of the particle
structures, it will govern the breaking and reforming of the chains
in the fluid, and can be used to predict the shear response of the
fluid.

When apparent viscosity, τ γ̇/ , is plotted against Mason number
for experimental data, the apparent viscosity curves collapse to a
single master curve, so that apparent viscosity is solely a function
of Mason number. Thus, the Mason number acts as a non-
dimensionalized input condition that yields one output condition,
and it is through this result that we intend to relate the Bingham
and Mason numbers. This nondimensionalization of experimental
data allows low shear rate experimental data to be extrapolated to
high shear rates, and will be used in our relationship between
Bingham number and Mason number. In particular, this is useful as
shear rates in practical MR devices can exceed γ̇ > −10 000 s 1, while
rheometer experiments typically operate at γ̇ < −1000 s 1.

The Mason number is often defined using the H field, where
β=M H3 with β μ μ μ μ= − +( )/( 2 )p c p c from the textbook problem

of an isolated, linearly susceptible sphere in a uniform applied
field, yielding

η γ

μ μ β
=

˙
H

H
Mn( )

16
,

(11)
c

c0
2 2

where μp and μc are the relative permeability of the particle and
carrier fluid respectively. The H-based form has several benefits,
among which are its amenability to theoretical analysis, applic-
ability to inverse ferrofluids, and its ease of relation to the electric
analogue used in electrorheological fluid analysis. While M is a
derived quantity, experimentally, the magnetization curves of the
fluid must always be known to determine the magnetic field
within the testing device. The H-based analysis also requires
measuring μ H( )p for β, a process which involves measuring M.
Using M or μp from a magnetometer invokes the assumption that
the particle structure, and thus magnetization, is the same in both
magnetometer and device, however in practice, this assumption
appears successful [14]. Most importantly, Klingenberg showed
that approaching saturation, the H based Mason number fails to
deliver the desired coalescing of data onto a master curve [8]. In
the context of device engineering, nonlinear magnetization must
be accounted for, so that we choose to use a Mason number based
on average particle magnetization. Also, because average particle
magnetization is a measurable quantity, it can also be used to
validate the assumed particle structure in models of MR fluids.

We also note that the Mason number definition sometimes
varies in the literature. Here we define Mason number using a
characteristic separation distance of a particle diameter, as it gives
a useful definition of τ⁎. This leads to a definition of Mn that is 32
times larger than that in [8].
3. Theory

We now seek to relate Mason number to Bingham number, so
that microscopic results can be extended to macroscopic behavior,
and vice versa. In order to relate Bingham number to Mason
number, we observe that both are ratios of magnetic and viscous
forces, at bulk and microscopic scales respectively. If we assume
that the ratio of forces scales linearly from microscopic to bulk
macroscopic properties, then Bingham (magnetic/viscous) and
Mason (viscous/magnetic) numbers are inversely related. Assum-
ing that the characteristic shear rate is the same in both Bi and Mn,
solving for γ̇ in (10) gives

γ
σ πη

τ
πη

˙ = =
⁎F 1

3
Mn

3
Mn.

c c

0
2

This can then be substituted into (5),

π
τ τ
η η

=
⁎

−Bi 3
/

/
Mn ,

(12)

y

pl c

1

giving us a relationship between Bingham and Mason number, in
terms of two ratios. The first ratio, the ratio of the yield stress of
the bulk material to the magnetic forces between two particles,

τ
τ

τ

πμ
=⁎ M /48 (13)

y y

p0
2

is defined as the normalized yield stress. The second is the ratio of
suspension viscosity to carrier fluid viscosity,

η

η
= Suspension Viscosity

Carrier Viscosity
,

(14)
pl

c

the normalized viscosity. Normalized yield stress, τ τ⁎/y represents
how effective the magnetic attraction between particles manifests
as a yield stress, and η η/pl c represents how the addition of particles
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effects the suspension viscosity. Most importantly, we assert that
these two ratios are constant fluid properties of fundamental in-
terest, as will be shown below, and these are ratios that can be
predicted from existing literature and theory.

Again, note that the Bingham number is the ratio of magneti-
cally induced shear stress to viscous shear stress, and that the
Mason number is the ratio of viscous shear stress to magnetically
induced interparticle stress. Another useful perspective is that the
product of Bingham number and Mason number is a constant, or

π
τ τ
η η

=
⁎

Bi Mn 3
/

/ (15)

y

cpl

thereby evincing our earlier hypothesis. The term on the right, a
constant, acts as a figure of merit of the fluid–particle recipe, re-
presenting the effect the addition of particles has on yield stress
divided by the corresponding increase in viscosity. This term will
be expanded upon further in Section 4.

3.1. Normalized yield stress

In order to argue that τ τ⁎/y is a fluid property, we need to show
that yield stress scales roughly proportionally to average particle
magnetization across field strength. For low volume fraction fluids,
average particle magnetization as a yield stress scaling function
has been shown to be a successful scaling law [15]. For the high
volume fraction, high yield stress fluids of interest in controllable
force applications, an estimate for τ τ⁎/y can be obtained using ex-
isting fits of B vs. H and τy vs. H for a range fluids, and then solving
for τ τ⁎/y . Carlson [16] offers the empirical and widely used fits

τ ϕ μ= C H271.7 tanh(5.04 ) (16)y
1.524

0

⎡⎣ ⎤⎦ϕ μ μ= − − +B H H1.91 1 exp( 10.97 ) (17)
1.133

0 0

designed to cover iron-based fluids, including those sold by Lord
Corporation. In these equations, τMR is in kPa, H is in A/m and the
parameter C is 1.0, 1.16 or 0.95 depending on whether the carrier
fluid is hydrocarbon oil, water, or silicon oil respectively. Ne-
glecting the effect of carrier fluid, we can substitute these equa-
tions into τ τ⁎/y and obtain

⎡⎣ ⎤⎦
τ
τ

ϕ μ

μ
=

− −
⁎

H

H

1.43 tanh(5.04 )

1 exp( 10.97 )
.

(18)

y
1.257

0

0

2

For fields above H¼100 kA/M, this equation is largely constant,
depending solely on fluid volume fraction and carrier fluid, as
initially required. However in the limit of H¼0, (18) yields
τ τ = ∞⁎/y , as M drops off faster than yield stress, but an examina-
tion of Carlson's data shows that his yield stress model over-
estimates the experimentally measured yield stress at low field
strengths, so this issue can be neglected. Observing that for

ϕ≤ ≤0.2 0.5, τ τ⁎/y is within 15% of ϕ, this allows the construction
of the rule of thumb, τ τ ϕ≈⁎/y .

Beyond developing experimental rules of thumb for yield
stress, normalized yield stress also appears in most particle level
modeling work, however, typically in the form of τ H/y

2. Pen and
paper models work by assuming a particle structure, allowing the
particles to magnetically interact, deforming the structure under
shear, and then computing the interparticle forces to find the
shear stress. Computational models follow a similar structure, but
with a dynamic structural deformation [4,17,18]. In order to re-
solve some of the nonlinear magnetization in the particles, some
models allow regions of the particle to saturate, obtaining
τ ϕ∝ H My s

3/2 1/2, but these models fail near Ms [19,20]. The un-
surprising solution is to work in terms of averaged particle
magnetization, as it allows a model to work across the entire
spectrum of applied field, as shown in [21]. The benefit of this
nondimensional form for yield stress is that it takes τy, a field
dependent term, and puts it in a form that is roughly independent
of field, depends only on particle type and concentration, and can
be predicted using various analytical methods.
3.2. Normalized viscosity

The normalized viscosity ratio, η η/pl c, is the ratio of off-state

viscosity to carrier viscosity. The typical assumptions about plastic
viscosity are that it is independent of applied magnetic field, and
can be determined by measurements of the fluid with no field
applied. Since carrier fluid viscosity is independent of field, η η/pl c

will be a function only of the addition of the particles, and thus a
fundamental property of the fluid. Since the particles in an MR
fluid are traditionally hard spheres, a prediction of this material
property can be determined from the theoretical and empirical
relations developed in the study of hard sphere dispersions [22],
for example, the empirical Quemada relation,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟η

η
ϕ

ϕ
= −

−

1
(19)c max

2

where ϕmax is the maximum particle volume fraction. However,
these hard sphere equations must be used with caution, as prac-
tical MR fluids use additives which significantly affect the plastic
viscosity, and so generalized forms with more parameters may be
required. Once an appropriate viscosity relationship has been
found, Eq. (12) can be expressed as a function solely dependent on
ϕ. The notion that normalized viscosity is constant can also be
used to show that the highly temperature dependent post yield
performance of MR fluids is caused only by changes in the carrier
fluid [23].

However, while the assumption that ηpl is constant is effective
in the practical analysis of MR devices, this assumption often
breaks downwhen examining the rheogram of practical MR fluids.
The plastic viscosity for a particular value of field is determined, in
practice, from the high shear rate asymptote of rheogram or shear
stress vs. shear rate data as shown Fig. 1. These plastic viscosities
for discrete values of magnetization, while reasonably similar in
value, are not necessarily identical to the off-state viscosity, so that
there exists varying levels of shear thinning. The theory of hard
sphere dispersions tells us that viscosity is dependent on particle
structure, so when field is applied and the particles form chains,
the applicability of dispersion theory to determine ηpl is ques-
tionable. In an attempt to resolve this dilemma, Berli and de
Vincente developed a structure based model for viscosity [24], and
used it to model traditional MR fluids as well as inverse ferrofluids.
Their analysis leads to low and high shear rate viscosity plateaus,
which can be well represented for a typical MR fluid as a Casson
plastic,

τ τ η γ= + ˙∞( ) . (20)y
1/2 1/2 1/2

This introduces a field dependent viscosity term that smooths the
transition between pre- and post-yield behavior, improving the
quality of the fit for some fluids, which typically tend be small
particle (thermally influenceable) low yield stress fluids. However,
for consistency with the device engineering literature and for ease
of analysis, the widely accepted Bingham plastic constant (post-
yield) viscosity approximation is sufficient for our purposes.
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4. Experiment

The Bingham–Mason relationship can be measured directly by
examining apparent viscosity. Apparent viscosity, η τ γ= ˙/app , is the
viscosity of a Newtonian fluid that would give the measured stress
at the current shear rate. For a Bingham plastic, where

τ τ η γ= + ˙ (21)y pl

the apparent viscosity is

η τ γ η= ˙ +/ (22)yapp pl

The high shear rate limit of apparent viscosity is denoted as η∞, and
for a Bingham plastic, η η=∞ pl. Apparent viscosity is often nor-
malized by η∞, which for a Bingham plastic yields

η

η

η

η
τ

η γ
= +

˙
= +

∞
1 Bi.

(23)

yapp pl

pl pl

Thus a measurement of apparent viscosity leads directly to a
measurement of Bingham number. For MR fluids, a well known
result is that when apparent viscosity is plotted against Mason
number, a set of curves of apparent viscosity coalesce to a single
master curve [8,24]. Therefore, by using normalized apparent
viscosity plotted against Mason number, we obtain a single curve
that allows us to directly relate Bingham number to Mason
number for a particular MR fluid being measured.

Fig. 3 shows a measurement of apparent viscosity using the
commercially available Lord MRF-140CG fluid, demonstrating the
collapse of apparent viscosity curves across Mason number. This
20 °C temperature controlled data set was collected using a cus-
tom-built high shear rate (γ̇ < −10 000 s 1) Searle cell magnetorhe-
ometer [25]. High shear rates are achieved by using a narrow
( =d 0.25 mm) active gap, and the concentric cylinder geometry
ensures a uniform shear rate. Using γ̇ ≫ 0 avoids nonlinearities
associated with near yield flow, and ensures that the data is well
modeled as a Bingham plastic. In this experimental procedure, a
servomotor rotates the inner cylinder using an ascending staircase
velocity profile, while the outer cylinder is connected to a fixed
base by a 0.706 N m angular load cell. The applied magnetic field
was simulated via a 2D axisymmetric FEM analysis and validated
using sensing coil measurements of flux density, and the fluid
magnetization was calculated using the characterized field and
manufacturer supplied −B H data. Since the carrier fluid for-
mulation for Lord fluids is proprietary, the carrier fluid was ob-
tained by allowing a well mixed sample to separate, and then
Fig. 3. Normalized apparent viscosity for Lord MRF-140CG.
decanting the sediment-free upper layer. Carrier fluid viscosity
was measured on an Anton Paar Phyisca MCR-300 rheometer, with
the average of three runs to yield a viscosity value of η = 9.9 mPa sc
at 25 °C.

For magnetorheological fluids, apparent viscosity is typically
fitted to a curve of the form

η

η
= +

∞

−K1 Mn ,
(24)

app 1

where K is a fitted parameter. In Fig. 3, we show such a fit, with
K¼0.078, and η =∞ 0.59 Pa s. Since MR fluids are well described by
the Bingham plastic model, from (23), η η = +∞/ 1 Biapp , and from

our experiment η η = +∞
−K/ 1 Mnapp

1, then ∝ −Bi Mn 1, validating
(12).

The fitted parameter K is also known as the critical Mason
number ⁎Mn [24,7,26], and corresponds to the Mason number
where the low Mn asymptote of η η∞/app intersects η η =∞/ 1app , or the

Mason number where =Bi 1. From (12) the critical Mason number
can be expressed as

π
τ τ
η η

=⁎
⁎

Mn 3
/

/
,

(25)

y

pl c

which is also the product of Mason and Bingham numbers (15).
The critical Mason number serves two purposes: it acts as a
conversion factor between Mason number and Bingham number,
and also acts as a fluid figure of merit. Critical Mason number
converts a nondimensionalized input condition (Mason number)
to nondimensionalized output condition (Bingham number), so
that these two numbers can be easily related. Critical Mason
number acts as a controllable force figure of merit with respect
to the addition of particles, and can be thought of the benefit the
addition of particles has had on yield stress to the penalty paid as
in increase in viscosity. Fluids with a large ⁎Mn possess a larger
controllable force ratio, while ⁎Mn decreases with increased
volume fraction. Finally, because τ τ⁎/y and η η/pl c are analytically
accessible ratios, we now have a way to determine critical Mason
number during the fluid design process.

However, note that Eq. (24) is limited to fluids well described
by the Bingham plastic model, a description not suited to all
electrically and magnetically responsive fluids. In some of these
fluids, the fluid scales between −Mn 2/3 and Mn�1, where fluids
with particles influenced by thermal motion depart from Mn�1

scaling [27–30]. However these fluids are typically low yield stress
fluids measured at low field strengths, and this is attributed to the
effects of Brownian forces on the particle [31]. However, in the
context of controllable force applications, where high yield stress
fluids are used, thermal effects on the particles are relatively small,
and the Bingham plastic model and Mn�1 scaling are a proven
success [8]. These effects manifest at high Mn, with experimental
apparent viscosity data decreasing slower than (24) predicts.
However for the purpose of relating Bi and Mn, typically at that
point Bi is small ( <Bi 2), and thus negligible for controllable force
applications. Such errors can potentially be resolved through the
use of Casson plastic type models [24].

Finally, it should be noted that fitting a line to the apparent
viscosity curve can be problematic, especially when high Mn data
is unavailable, as there is no clear value for η∞. An alternate ap-
proach is to plot normalized stress, τ τ⁎/ against Mason number,
shown in Fig. 4. The normalized stress plot demonstrates, like the
apparent viscosity plot, that stress values can be collapsed across
varying field strengths through Mason number based analysis,
while retaining plastic viscosity information at low Mason num-
bers, unlike apparent viscosity, offering an alternate, improved
master curve. This makes determining τ τ⁎/y and η η/pl c much easier,



Fig. 4. Normalized stress vs. Mason number, with high Mason number data as
inset. The black line corresponds to a linear least squares fit, and shows how the
low Mason based fit agrees with the inset high Mason number data.
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as for a Bingham plastic, normalized stress is given by

τ
τ

τ
τ

η η

π
= +⁎ ⁎

/

3
Mn. (26)

y pl c

Then a simple linear least-squares fit gives τ τ =⁎/ 0.499y and
η η =/ 59.9pl c , fromwhich we generated the previously stated values
for K and η∞. This procedure has the benefit that it separates τ τ⁎/y

and η η/pl c, allowing them to be fit separately, instead of con-
founding the two terms into K. This fitting procedure works even
when there is no high Mason number data, as shown in Fig. 4. The
benefits of plotting in this form are that it clearly shows the
successful normalization of yield stress, as well as that η η/pl c is
independent of field, and separates them into discrete elements
for easy linear fitting, and serves as a complement to typical
stress–shear rate graphs and normalized apparent viscosity
graphs. The downside of this plot is that since it is no longer
log–log, it much more clearly shows errors and noise in experi-
mental data, and can be quite sensitive to errors in characteriza-
tion of the magnetic field.
5. Discussion

The primary purpose of our analysis is to develop a non-
dimensional scaling relationship to be used to relate the perfor-
mance of different devices. In traditional device design, several
output parameters (τy, ηpl and Bi) must be accounted for across a
large input space (magnetic field strength, shear rate and tem-
perature), requiring extensive experimental characterization. We
want to avoid this, and here Mason number analysis shines – it
allows the performance of MR fluid data to be reduced to one
single master curve, dependent solely on Mason number. Then to
obtain the desired output quantity of controllable force, Eq. (12),
yields the Bingham number. We also show that τy can be made
independent of magnetization as τ τ⁎/y , and plastic viscosity can be
temperature independent in the form of η η/pl c . This non-
dimensionalization allows us to take low shear rate, low field data
measured on a small fluid sample, and extend it to a large scale
energy absorbing device with high fields and high shear rates with
a high level of confidence. This is demonstrated for a large scale
energy absorbing device operating at γ̇ > −25 000 s 1 in [32].

For pen and paper analysis, there exists the notion of a Mason
number above which no chains can form in the fluid, posing an
upper limit on the existence of the MR effect. However, if this
limiting Mason number occurs at a low Bingham number, the loss
in yield stress will not be an issue for experimental devices. In
[33,34], the limiting Mason number was found to be ≈Mn 1. Using
(12), we can use our previously determined values of τ τ⁎/y and
η η/pl c to find that at =Mn 1, =Bi 0.08, which indicates that this
effect occurs at such low controllable force levels that it will have
an insignificant effect on MR device performance.

The relation between Bingham and Mason number can also be
used to inform the MR fluid design process. For example, let us
assume that we have a damper with a given device geometry, and
we seek to design a fluid such that the damper has a high max-
imum damping force at maximum field (τ τ⁎/y ), a large Bingham
number ( ⁎Mn ), and a sufficient sedimentation time [35]. For
maximizing τ τ⁎/y , we can seek to increase yield stress by increasing
M or by raising τ τ⁎/y itself. To increase M, one option is to use
particles made out of novel, highly magnetic materials, or alter-
natively to replace the carrier fluid with ferrofluids, with the in-
tention of increasing the particle magnetization [36,37]. To raise
τ τ⁎/y , we can either increase volume fraction, or more interestingly,
use novel particle formulations, such as fluids with nanowires,
nonmagnetic particles or differently shaped particles [38–42].
Once the particle geometry and type are chosen, choosing the
volume fraction is a matter of managing the trade off between
yield stress and viscosity, as raising volume fraction raises η η/pl c

faster than τ τ⁎/y , reducing ⁎Mn . So if we seek to maximize con-
trollable force, the only remaining free variable in (12) is ηc in
Mason number. The final constraint, settling time, is expected to
be dependent on the carrier fluid viscosity and density, and par-
ticle geometry, so for our case of fixed particle formulation, long
settling times (large ηc) must be balanced against large con-
trollable force ratios (small ηc).
6. Conclusion

We demonstrated that ∝ −Bi Mn 1, or ×Bi Mn is a constant, in
magnetorheological fluids, both theoretically and experimentally,
resulting in Eq. (12), a simple algebraic relation. Theoretically, we
demonstrated that this behavior arises because microscopic forces
and macroscopic forces are linearly related, and experimentally
validated this relationship through measurements of apparent
viscosity on a high shear rate Searle cell-type rheometer. It was
shown that that the relationship between Bingham number and
Mason number depends on two nondimensional quantities, τ τ⁎/y

and η η/pl c, and we demonstrated that these ratios represent fun-
damental fluid properties that are experimentally and analytically
accessible. These ratios also define the critical Mason number, ⁎Mn ,
through Eq. (25). In order to identify these quantities, fluid stress
measurements were placed in the form of τ τ⁎/ vs. Mn, allowing for
easy identification of τ τ⁎/y and η η/pl c.

Finally, this relation was used to examine a Mason number
corresponding to a theoretical upper limit on the performance of
MR fluids, and showed that this Mason number corresponded to
Bingham numbers outside the operational range for experimental
results. Finally, the MR fluid design process was looked at through
the lens of ∝ −Bi Mn 1, showing how current approaches for novel
fluids fall within the recommendations made by the analytical
methods in this paper.
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