< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >

Nobel Laureate Roger Tsien to Speak at MPI Workshop

March 11, 2013

Prof. Roger Y. Tsien, 2008 Nobel Laureate in Chemistry, will deliver a keynote speech on Magnetic Particle Imaging (MPI) at the upcoming International Workshop on MPI (IWMPI 2013) to take place at University of California, Berkeley on March 23-24, 2013. 

 
Please see the workshop program for a full list of talks/posters on this exciting new imaging modality: 
http://iwmpi.berkeley.edu/FullProgram.shtml


Magnetic Nanoparticles Remove Bacteria from Blood

February 11, 2013

When bacteria build up in the blood, it's bad news. The condition can lead to a serious infection known as sepsis, which can turn deadly even with aggressive treatment using antibiotics. Researchers at Massachusetts Institute of Technology and Harvard Medical School may have found a way to pluck bacterial invaders from blood by magnetic separation. Daniel S. Kohane and coworkers coated magnetic nanoparticles with zinc coordinated bis(dipicolylamine), a complex known to bind strongly to anionic phospholipids that densely decorate the surfaces of bacteria. The researchers added these modified nanoparticles to blood tainted with Escherichia coli and ran the blood through a magnetic microfluidic device. They were able to pull almost all of the bacteria from the blood, even at blood flow rates of 60 mL per hour. The technology, the researchers say. could be adapted to treat sepsis in people, which in the U.S. has become the seventh-leading cause of infant mortality and the 11th-leading cause of death.

For more info, check out the preprint.


Investigation of Wear and Tear in Artificial Limbs

February 06, 2013

Anna C. Samia at Case Western Reserve University in Cleveland, Ohio, one of our own magnetic nanoparticle researchers, specializes in metallic nanostructures. She has just been awarded a five-year $600,000 National Science Foundation-CAREER grant to create new materials and equipment to test ultra-high molecular weight polyethylene used to make artificial joints. She and her team of researchers will also develop magnetic particle imaging techniques to monitor degradation and wear.

The ultimate goal is to give manufacturers targets they can home in on to make the implant material more resistant to the environment inside us, so that implants last a lifetime.


Nanotechnology for Water Purification

January 19, 2013

Tania Dey has recently edited an interesting new book about nanostructured materials and their use in water purification.These materials include carbon nanotubes, silver-impregnated cyclodextrin nanocomposites, nanostructured iron-zeolites, carbo-iron nanomaterials, photocatalytic titania nanoparticles, nanofiltration membranes and functionalized silica nanoparticles, in addition to magnetic nanoparticles. Tania contributed the first (review) chapter to this book, which elucidates the role of magnetic nanoparticles. “Especially the naturally occurring ones, such as magnetite, maghemite, zero valent iron, mixed oxides (Co-ferrites, Ni-ferrites etc) as well as cellulosic nanofibers can be used as an effective adsorbent for water remediation, making the process cost-effective and sustainable. Being a dispersed system, these adsorbents eliminate the need of high pressure streams for water purification."

See information about the book here: http://universal-publishers.com/book.php?method=ISBN&book=1612336191


Inexpensive Solution for Storing Solar Energy as Hydrogen

December 16, 2012

How can solar energy be stored so that it can be available any time, day or night, when the sun shining or not? EPFL scientist Kevin Sivula and colleagues are developing a technology that can transform light energy into a clean fuel that has a neutral carbon footprint: hydrogen. The basic ingredients of the recipe are water and metal oxides, such as iron oxide, better known as rust. The team purposefully limited itself to inexpensive materials and easily scalable production pro-cesses in order to enable an economically viable method for solar hydrogen production. They hope to attain efficiencies of 10% in a few years, for less than $80 per square meter, a price competitive with traditional methods of hydrogen production.

Maybe we can further improve on this process by using magnetic particles?

Check it out at http://swissinnovation.org/news/web/2012/06-121111-ce.html


Welcome to the Winter 2012 Issue of Magnetics Magazine!

December 12, 2012

A new issue of the Magnetics Magazine is available:  Winter 2012. This industry driven magazine reviews applications of magnets in the "real" world, like for example in wind turbines, discusses permanent magnets and rare earth availability, shows magnetic design software and many more engineering related issues (Spintronics etc).

This Winter 2012 issue also includes an industry outlook, a description of the upcoming Magnetics 2013 conference, and the newest resource guide in the Magnetism world with all the businesses and industries.


Double-Edged Iron

December 12, 2012

Hepcidin is a small peptide hormone discovered by three groups investigating iron-regulated liver genes and antimicrobial peptides. This new hormone turned out not only to regulate iron but also to have homology with peptides required for innate immune responses. Drakesmith and Prentice (p. 768) review the importance of hepcidin during infection, explaining how it is involved in withholding iron from microbial pathogens to curtail replication and how intracellular bacteria are able to thwart this host response. Recent work highlights the potential hazards of iron-supplementation in infection, particularly in malaria, whereby an overload of iron, meant to treat malaria-induced anemia, may negate the protective effects of hepcidin.


Theranostic Iron Oxide Nanoparticles in the treatment of Type I Diabetes

December 08, 2012

Anna Moore and co-workers at Harvard Medical School have developed an MRI contrast agent with RNA interference function for protecting transplanted islets from immune rejection in β-cell replacement therapy. This theranostic probe (MN-siB2M) was synthesized by coating iron oxide cores with amino-dextran, then conjugating a fluorescent dye, and further decorating via SPDP-chemistry with siRNA that downregulates the expression of β2 microglobulin, a key component of the major histocompatibility complex class I molecules that contribute to immune rejection. MN-siB2M-labelled human islets were transplanted into immunodeficient mice enabling non-invasive monitoring of graft longevity through MRI. Furthermore, mice transplanted with MN-siB2M-labelled islets showed improved preservation of graft volume after 2 weeks and a delay in diabetes onset after adoptive transfer of T cells.

For more information check out the original article at: http://diabetes.diabetesjournals.org/content/61/12/3247.long


< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >

For more information, check out our Archives.

Last Modified: February 22, 2024 - Magneticmicrosphere.com © 2024