< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 >

Theranostic Iron Oxide Nanoparticles in the treatment of Type I Diabetes

December 08, 2012

Anna Moore and co-workers at Harvard Medical School have developed an MRI contrast agent with RNA interference function for protecting transplanted islets from immune rejection in β-cell replacement therapy. This theranostic probe (MN-siB2M) was synthesized by coating iron oxide cores with amino-dextran, then conjugating a fluorescent dye, and further decorating via SPDP-chemistry with siRNA that downregulates the expression of β2 microglobulin, a key component of the major histocompatibility complex class I molecules that contribute to immune rejection. MN-siB2M-labelled human islets were transplanted into immunodeficient mice enabling non-invasive monitoring of graft longevity through MRI. Furthermore, mice transplanted with MN-siB2M-labelled islets showed improved preservation of graft volume after 2 weeks and a delay in diabetes onset after adoptive transfer of T cells.

For more information check out the original article at: http://diabetes.diabetesjournals.org/content/61/12/3247.long


Meeting Announcement: Frontiers in BioMagnetic Particles III

December 07, 2012

What should you do if you want to come to our next Magnetic Carrier meeting in Dresden 2014, but don't have the patience to wait for more than a year? You could take part in our sister/brother meeting in Telluride, Colorado titled "Frontiers in BioMagnetic Particles". It will be held from June 2-5, 2013 and is organized by Thompson Mefford and Jeff Anker.

Topics of the meeting will be: biomedical imaging and sensing, magnetic separations, drug delivery, hyperthermia, biomedical applications, entrepreneurship, and a separate student session will address career development. The social program will include a traditional Colorado cook-out and excursions in the surrounding mountains. Abstracts are due March 1, 2013. Applications for student travel scholarships are due at the same time.

For more information: www.magneticnanoparticle.com


Webinar: Create Custom Tools for Electromagnetic Designs

November 29, 2012

The company Integrated Engineering Software is organizing a webinar about how to create custom tools for the analysis of electromagnetic designs. If that interests, then you might take part in their webinar on

Thursday, December 13, 2012 - 9:00AM CST

They will present API, where users can integrate their CAE software programs to other applications they need for design analysis, bringing each particular model to an even higher level of sophistication. One example will be how to optimize a magnetic core shape to obtain a desired B field profile.

The presentation of these features will be approximately 30 minutes followed by a 15 minute question/answer period.

To register, click here.


Self-Healing Polymer Composite Made with Nickel Microparticles

November 26, 2012

An interesting self-healing material was developed by Zhenan Bao and coworkers at Stanford University. It is made of a randomly branched, hydrogen-bonding polymeric network that embeds nickel microparticles that have nanostructured surfaces.

Bao and coworkers started with a mixture of polyurethanes and added as
much as 30% by volume nickel microparticles to make the polymer conductive. The polymer network forms hydrogen bonds with itself and with oxides on the surface of the nickel particles. The hydrogen bonds are the weakest bonds in the system, and they preferentially break when the composite is damaged. When cut pieces of the material are brought together, the hydrogen bonds quickly re-form.

The healing of the material is so rapid that the electrical conductivity is restored to more than 90% of its original value within 15 seconds. The mechanical properties
take a little longer. Complete healing takes 30 minutes. And the material can heal itself repeatedly, as shown by using the material as electronic skin on a doll-like mannequin. A touch sensor on the palm responds to pressure, whereas a flexion sensor at the elbow joint responds to bending. The team now seeks to make the material stretchable as well as bendable so that it will be even more like natural skin.

For  more information, check out the original article at
      http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.192.html.


Futuristic Concept: The IAT Maglev, the New Doubledecker Magnetic Levitation Train

November 25, 2012

Dieter Schramek and his Innovative Access Team (IAT) have further developed Germany‘s Transrapid system - the magnetic levitation train (or maglev) as it is normally called. They are now looking for partners and/or shareholders to make their revolutionary new traffic system a reality.

Maglev trains have the potential to solve future transportation problems by providing a clean technology, high speed transportation (up to 400 km/h) at affordable prices. The new IAT-maglev saves space, time and energy due to its construction (double decker) and innovative energy supply system. Check out this interesting system at

  http://www.iat-maglev.com/?q=Start


Monodisperse Magnetite and Maghemite Microspheres as Anode Materials for Lithium-Ion Batteries

November 23, 2012

Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres are prepared via a surfactant-free solvothermal combined with precursor thermal transformation.  The as-prepared magnetic microspheres have a relatively high specific surface area of 122.3 and 138.6 m2/g, respectively, and are explored as the anode materials for Li-ion batteries. They have a high initial discharge capacity of 1307 and 1453 mA-h/g, respectively, and a good reversible performance (450 for Fe3O4 and 697 mA-h/g for γ-Fe2O3 after 110 cycles).  Check it out here.


New Standard for Particle Size Distribution

October 11, 2012

The American Society for Testing Materials, or ASTM, had published a new standard: E2834 - Standard Guide for Measurement of Particle Size Distribution of Nanomaterials in Suspension by Nanoparticle Tracking Analysis (NTA). The Standard is available from ASTM at http://www.astm.org/Standards/E2834.htm .


New Ferric Citrate-Binding Protein C Found in Bacteria

October 08, 2012

A unique bacterial protein selectively binds an unstable triferric citrate complex to import iron into Bacillus cereus cells, reports a team from the University of California, Berkeley (Proc. Natl. Acad. Sci. USA, DOI: 10.1073/pnas.1210131109). Iron is an essential element that bacteria commonly sequester by sending ligands, called siderophores, to chelate insoluble Fe(III) in the environment. Selective binding and transport proteins then convey the complexes back into the cells.
Common siderophores include citrate and citratebased ligands. Citrate’s carboxyl and hydroxyl groups coordinate Fe(III). Previously, however, citrate-binding proteins were observed harboring only Fe(citrate)2 and Fe2(citrate)2. Kenneth N. Raymond and colleagues have now identified a B. cereus protein, christened ferric citrate-binding protein C, or FctC, that selectively binds Fe3(citrate)3 even when other iron-citrate species are present in solution. Only a few closely related species have genes for similar proteins, so FctC may give the B. cereus group an advantage by enabling import of iron complexes that other bacteria cannot sequester.


< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 >

For more information, check out our Archives.

Last Modified: December 09, 2013 - Magneticmicrosphere.com 2013