Magnetic Carrier Meeting 2016 a Big Success !

February 12, 2017

The 11th International Conference on the Scientific and Clinical Applications of Magnetic Carriers took place in Vancouver, Canada from May 31 - June 4, 2016 and was like always a great week full of new magnetic particle results, discussions and applications. Everybody had a great time in Vancouver, Canada, especially during the reception underneath the 26 m long whale skeleton or during our boat ride.

And our special issue in the Journal of Magnetism and Magnetic Materials is now finally out too. As always, there are lots of articles with new research - to be exact, 58 articles with novel research! Go and check them out here.

Theme Issue

December 10, 2016

The journal "Interface Focus" just published a theme issue about ‘Multifunctional nanostructures for diagnosis and therapy of diseases’. Check it out, there are few relevant articles in there for our magnetic particle community.

Check out the articles here:

Thank you Beata Kalska-Szostko, Claudio Sangregorio, Nguyen TK Thanh and Sylvie Bégin-Colin for organizing this issue!

Tiny Magnetic Sensors Might Open Door to Hand-Held Tests

November 13, 2016

In 2008, Dr. Freeman and his team developed a tiny magnetic sensing device, called a torque magnetometer, on a piece of silicon chip that is smaller than the diameter of a strand of human hair. The device features a tiny spatula-shaped arm suspended on a narrow band of material that twists ever so slightly when the arm is pulled up or down by a magnetic field.
    Now, Dr. Freeman has joined forces with scientists at the University of Calgary and the National Institute for Nanotechnology to add a nanoscale optical system that can measure the position of the arm to extraordinary precision by setting up a pattern of laser light along its length. The system is so sensitive it can record a displacement in the tip of the spatula as small as the diameter of a proton. In a paper in the journal Nature Nanotechnology, the scientists document their latest version of the device and demonstrate its ability to sense magnetic forces at scales far smaller than the device itself.
    There could be a host of uses for such a tool, the researchers say, including probing and characterizing the magnetic properties of new materials that are being developed for future applications in electronics and quantum computing.
    But the most imaginative use may be in the area known as magnetic spectrometry. Because different species of atoms have magnetic properties that can be distinguished from one another, it’s possible to use magnetism to tell them apart. The method can be used like a chemical fingerprint. Such measurements are performed today with bench-sized or even room-sized machines. The Alberta researching team appears to have hit upon a way to shrink the capability down to a microscopic device that could be carried around to determine the composition of different materials.

Prevention of Restenosis with Magnetically Targeted Endothelial Cells

October 06, 2016

Boris Polyak at el. assessed the potential of magnetically mediated delivery of endothelial cells (ECs) to inhibit in-stent stenosis induced by mechanical injury in a rat carotid artery stent angioplasty model. ECs loaded with biodegradable superparamagnetic nanoparticles (MNPs) were administered at the distal end of the stented artery and localized to the stent using a brief exposure to a uniform magnetic field. After two months, magnetic localization of ECs demonstrated significant protection from stenosis at the distal part of the stent in the cell therapy group compared to both the proximal part of stent in the cell therapy group and the control (stented, nontreated) group: 1.7-fold (p < 0.001) less reduction in lumen diameter as measured by B-mode and color Doppler ultrasound, 2.3-fold (p < 0.001) less reduction in the ratios of peak systolic velocities as measured by pulsed wave Doppler ultrasound, and 2.1-fold (p < 0.001) attenuation of stenosis as determined through end point morphometric analysis.

The study thus demonstrates that magnetically assisted delivery of ECs is a promising strategy for prevention of vessel lumen narrowing after stent angioplasty procedure. Have a look here at this very interesting work.

Special Issue on Magneto-Plasmonics - Submissions Requested

August 07, 2016

Magneto-plasmonics is a relatively new field that has great potential applications in biomedicine and biomedical technologies such as ultra-sensitive biosensing and bio-detection, bio-imaging, bio-therapy, drug-delivery, nano-imaging, to name a few. Deep understanding of various factors influencing magnetoplasmon properties is an important step in the effort to design new magnetic sensors and devices.

Although some progress on plasmonics has been achieved in the last few years, through combined simulation, modeling, experimental, and theoretical studies, there is still strong need to investigate new phenomena on magneto-plasmonics, in order to better tune and control magneto-optic properties, and to increase the sensitivity of the magnetic bio-sensor through modification of the optical radiation, magnetic field, and structure.

This new field merges the physics of nano-magnetics, where biological samples such as cells and DNA are made to interact with magnetic moments of a material in transverse direction, and nano-optics, where biological samples are made to interact with optical radiation in visible, infra-red, and telecommunication wavelength ranges. In a similar manner, it merges nano-plasmonics where biological samples are made to interact with surface plasmonic wave fields, also referred to as evanescent radiation fields.

Dr. Conrad Rizal from Baylor University's Department of Physics is the lead editor of this special issue. Deadline for paper submissions is November 1, 2016. Please check out more details here.

New Insight Into Magnetic Interactions During Magnetic Hyperthermia

July 09, 2016

A new paper by Iacob, Kuncser, and Ladislau Vekas et al. carefully investigated, both theoretically and experimentally, the behavior of different concentrations of superparamagnetic nanoparticles in an alternating AC magnetic field ranging from 14-35 kA/m. They found that magnetic interactions, that increase with increasing volume fraction, can result in a decrease in SAR, whereas some authors claim that interactions can cause an increase in SAR.

See for yourself and read the paper here.

FDA Warns from Use of Anemia Drug Feraheme (Ferumoxytol)

June 13, 2016

The U.S. Food and Drug Administration (FDA) is strengthening an existing warning that serious, potentially fatal allergic reactions can occur with the anemia drug Feraheme (ferumoxytol). We have changed the prescribing instructions and approved a Boxed Warning, FDA’s strongest type of warning, regarding these serious risks. Also added is a new Contraindication, a strong recommendation against use of Feraheme in patients who have had an allergic reaction to any intravenous (IV) iron replacement product. Health care professionals should follow the new recommendations in the drug label.

Check out this pamphlet here to read about it.

The effects were very serious, as you can learn from the last paragraph of the FDA warning: Since the approval of Feraheme on June 30, 2009, cases of serious hypersensitivity reactions, including death, have occurred. A search of the FDA Adverse Event Reporting System database identified 79 cases of anaphylactic reactions associated with Feraheme administration, reported from the time of approval to June 30, 2014. Of the 79 cases, 18 were fatal, despite immediate medical intervention and emergency resuscitation attempts. The 79 patients ranged in age from 19 to 96 years. Nearly half of all cases reported that the anaphylactic reactions occurred with the first dose of Feraheme. Approximately 75 percent (60/79) of the cases reported that the reaction began during the infusion or within 5 minutes after administration completion. Frequently reported symptoms included cardiac arrest, hypotension, dyspnea, nausea, vomiting, and flushing. Of the 79 cases, 43 percent (34/79) of the patients had a medical history of drug allergy, and 24 percent had a history of multiple drug allergies.

For more information, check out this website:

Obituary of Founding JMMM Editor Arthur J. Freeman

June 06, 2016

It is with a heavy heart that we must inform you of the death of JMMM's Founding Editor, Arthur J. Freeman, on June 7, 2016. He will be sorely missed for his scholarship, mentorship and friendship. Professor Freeman launched the Journal of Magnetism and Magnetic Materials in 1975 with North Holland (Elsevier) as publisher. The inaugural Editorial Board of the Journal read like a who's who in the %uFB01eld. Even so, launching a new journal is no easy task. It requires synergy between Editor and Publisher. Prior to this Professor Freeman had a false start with his International Journal of Magnetism, which was only published between 1971 and 1974 by a different publisher.
Freeman was a Professor Emeritus in the Department of Physics and Astronomy at Northwestern University, Evanston, IL. He was a pioneering developer of computational quantum material science based on density functional theory to simulate new materials via virtual fab within high-performance computers.
To read more, please see here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >

For more information, check out our Archives.

Photo of the Month
December 2012
EM Image of the self-assembly of magnetic iron-oxide nanoparticles. Rahi Vasani at the University of Western Australia (UWA) let a droplet with more than a trillion nanoparticles dry on a film. The high surface tension drew particles together into this beautiful picture which makes a cool computer background!

Search this site with the power of
Last Modified: December 09, 2013 - 2013